Send to

Choose Destination
See comment in PubMed Commons below
Brain Res. 1995 Jun 12;683(1):36-42.

Cholesterol oxidation reduces Ca(2+)+MG (2+)-ATPase activity, interdigitation, and increases fluidity of brain synaptic plasma membranes.

Author information

  • 1Geriatric Research, Education and Clinical Center, VA Medical Center, Minneapolis, MN 55417, USA.


These experiments examined effects of cholesterol oxidation on Ca(2+)+Mg(2+)-ATPase activity, Na(+)+K(+)-ATPase activity, and membrane structure of brain synaptic plasma membranes (SPM). Cholesterol oxidase [E.C. from Brevibacterium sp.] was used to oxidize cholesterol. Two cholesterol pools were identified in synaptosomal membranes based on their accessibility to cholesterol oxidase. A rapidly oxidized cholesterol pool was observed with a 1t1/2 of 1.19 +/- 0.09 min and a second pool with a 2t1/2 of 38.30 +/- 4.16 min. Activity of Ca(2+)+Mg(2+)-ATPase was inhibited by low levels of cholesterol oxidation. Ten percent cholesterol oxidation, for example, resulted in approximately 35% percent inhibition of Ca(2+)+Mg(2+)-ATPase activity. After 13% cholesterol oxidation, further inhibition of Ca(2+)+Mg(2+)-ATPase activity was not observed. Activity of Na(+)+K(+)-ATPase was not affected by different levels of cholesterol oxidation (5%-40%). SPM interdigitation was significantly reduced and fluidity was significantly increased by cholesterol oxidation. The relationship observed between SPM interdigitation and Ca(2+)+Mg(2+)-ATPase activity was consistent with studies using model membranes [7]. Brain SPM function and structure were altered by relatively low levels of cholesterol oxidation and is a new approach to understanding cholesterol dynamics and neuronal function. The sensitivity of brain SPM to cholesterol oxidation may be important with respect to the proposed association between oxygen free radicals and certain neurodegenerative diseases.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center