Format

Send to

Choose Destination
Microbiology. 1995 Jun;141 ( Pt 6):1433-42.

A Bacillus subtilis spore coat polypeptide gene, cotS.

Author information

1
Faculty of Pharmaceutical Sciences, Setsunan University, Osaka, Japan.

Abstract

A gene, cotS, encoding a spore coat polypeptide of Bacillus subtilis, was isolated from an EcoRI fragment (5.4 kb) of the chromosome by using synthetic oligonucleotide probes corresponding to the NH2-terminal amino acid sequence of Cot40-2 previously purified from the spore coat of B. subtilis. The nucleotide sequence (2603 bp) was determined and sequence analysis suggested the presence of two contiguous ORFs, ORF X and cotS, followed by the 5'-region of an additional ORF, ORF Y, downstream of cotS. The cotS gene is 1053 nucleotides long and encodes a polypeptide of 351 amino acids with a predicted molecular mass of 41083 Da. The predicted amino acid sequence was in complete agreement with the NH2-terminal amino acid sequence of Cot40-2. The orfX gene is 1131 nucleotides long and encodes a polypeptide of 377 amino acids with a predicted molecular mass of 42911 Da. The gene product of cotS was confirmed to be identical to Cot40-2 by SDS-PAGE and immunoblotting from Escherichia coli transformed with a plasmid containing the cotS region. Northern hybridization analysis indicated that a transcript of cotS and orfX appeared at about 5 h after the onset of sporulation. The transcriptional start point determined by primer extension analysis suggested that -10 and -35 regions are present upstream of orfX and are very similar to the consensus sequence for the sigma k-dependent promoter. Terminator-like sequences were not found in the DNA fragment (2603 bp) sequenced in this paper, which suggested that the cotS locus may be part of a multicistronic operon. The cotS gene is located between dnaB and degQ at about 270-275 degrees on the genetic map. Insertional mutagenesis of the cotS gene by introducing an integrative plasmid resulted in no alteration of growth or sporulation, and had no effect on germination or resistance to chloroform.

PMID:
7545510
DOI:
10.1099/13500872-141-6-1433
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Ingenta plc
Loading ...
Support Center