Send to

Choose Destination
Pflugers Arch. 1995 May;430(1):34-43.

Multiple ion binding sites in Ih channels of rod photoreceptors from tiger salamanders.

Author information

Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle 98195, USA.


The mechanism of ion permeation in K+/Na(+)-permeable Ih channels of tiger salamander rod photoreceptors was investigated using the whole-cell voltage-clamp technique. Ih channels showed features indicative of pores with multiple ion binding sites: in mixtures of K+ and thallium (T1+), the amplitude of the time-dependent current showed an anomalous mole fraction dependence, and K+ permeation was blocked by other permeant ions (with K0.5 values: T1+, 44 microM; Rb+, 220 microM and NH4+, 1100 microM) as well as by essentially impermeant ions (Cs+, 22 microM Ba2+, 9200 microM) which apparently block Ih by binding in the pore. In contrast, Na+ had little blocking action on K+ permeation. The block by all of these ions was sensitive to external K+ with the block by Cs+ being the least sensitive. Na+ was more effective than K+ in reducing the block by T1+, Rb+ and NH4+, but was less effective for the block by Cs+ and Ba2+. The blocking action of Cs+ and Ba2+ was non-competitive, suggesting that they block Ih channels at independent sites. Based on the efficacy of block by the different ions, the degree to which K+ and Na+ antagonize this block and the noncompetitive blocking action of Cs+ and Ba2+, the permeation pathway of Ih channels appears to contain at least three ion binding sites with at least two sites having a higher affinity for K+ over Na+ and another site with a higher affinity for Na+ over K+.

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center