Send to

Choose Destination
Chromosome Res. 1995 May;3(3):151-61.

RNA metabolism in situ at the 93D heat shock locus in polytene nuclei of Drosophila melanogaster after various treatments.

Author information

Department of Zoology, Banaras Hindu University, Varanasi, India.

Erratum in

  • Chromosome Res 1995 Aug;3(5):331.


Quantitative in situ hybridization to RNA on polytene chromosome spreads, using the 93D exon-, intron- and repeat-specific 35S-labeled antisense RNA probes, revealed treatment- (heat shock, benzamide, colchicine, heat shock followed by benzamide and heat shock in the presence of colchicine) specific differences in the metabolism (synthesis and/or accumulation at the puff site) of the various hsr-omega transcripts, namely hsr-omega-nuclear (omega-n), omega-pre-cytoplasmic (omega-pre-c) and omega-cytoplasmic (omega-c). While heat shock increased the levels of all the three transcripts at the 93D puff site in a coordinated manner, benzamide led to a significant increase in the levels of hsr-omega-n and pre-c; on the other hand, colchicine caused increased levels of the omega-n and omega-c RNA species at 93D. The results also suggested splicing of hsr-omega-pre-c RNA at the site of synthesis with the spliced-out 'free' intron (hsr-omega-fi) accumulating at the puff site. The rate of splicing and/or turnover of the hsr-omega-fi varied in a treatment-specific manner. Although a combined treatment to salivary glands with heat shock and benzamide or colchicine is known to inhibit puffing and [3H]uridine incorporation at 93D, the two treatments resulted in a treatment-specific increase in the in situ levels of different hsr-omega transcripts at the 93D site, suggesting a reduced turnover of specific transcripts from the site under these conditions. We suggest that the different 93D transcripts have roles in turnover and/or transport of RNA in nucleus as well as some role in cytoplasmic translation.

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center