Send to

Choose Destination
J Physiol. 1995 Feb 15;483 ( Pt 1):79-94.

Ca2+ regulation in the presynaptic terminals of goldfish retinal bipolar cells.

Author information

Department of Psychology, Faculty of Letters, University of Tokyo, Japan.


1. To investigate regulation of the intracellular free Ca2+ concentration ([Ca2+]i) in presynaptic terminals, the Ca2+ current (ICa) and [Ca2+]i in axon terminals were simultaneously monitored in acutely dissociated retinal bipolar cells under whole-cell voltage clamp. 2. The recovery phase of the Ca2+ transient, which was evoked by activation of ICa, became slower when the Na(+)-Ca2+ exchanger was suppressed by removing extracellular Na+. 3. Inhibition of the plasma membrane Ca2+ pump produced by raising extracellular pH to 8.4 increased the basal [Ca2+]i and caused incomplete recovery from the Ca2+ transient. These effects were not observed in orthovanadate-loaded bipolar cells. 4. The Ca2+ transient was not significantly affected by ryanodine, caffeine, thapsigargin, Ruthenium Red or FCCP. Internal Ca2+ stores may not participate in shaping the Ca2+ transient. 5. The ratio of the peak amplitude of the Ca2+ transient to the total amount of Ca2+ influx became smaller as the size of the Ca2+ influx increased. This action was not affected by blockage of Ca2+ transporters in the plasma membrane, or by reduction of the rate of Ca2+ influx. The peak amplitude of the Ca2+ transient seemed to be determined by Ca2+ buffering substances with a positive co-operativity.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Wiley Icon for PubMed Central
Loading ...
Support Center