Send to

Choose Destination
Cell. 1995 Jun 2;81(5):769-80.

The neuron-specific kinesin superfamily protein KIF1A is a unique monomeric motor for anterograde axonal transport of synaptic vesicle precursors.

Author information

Department of Anatomy and Cell Biology, Faculty of Medicine, University of Tokyo, Japan.


Axonal transport has been intensively examined as a good model for studying the mechanism of organelle transport in cells, but it is still unclear how different types of membrane organelles are transported through the nerve axon. To elucidate the function of this mechanism, we have cloned KIF1A, a novel neuron-specific kinesin superfamily motor that was discovered to be a monomeric, globular molecule and that had the fastest reported anterograde motor activity (1.2 microns/s). To identify its cargo, membranous organelles were isolated from the axon. KIF1A was associated with organelles that contained synaptic vesicle proteins such as synaptotagmin, synaptophysin, and Rab3A. However, this organelle did not contain SV2, another synaptic vesicle protein, nor did it contain presynaptic membrane proteins, such as syntaxin 1A or SNAP-25, or other known anterograde motor proteins, such as kinesin and KIF3. Thus, we suggest that the membrane proteins are sorted into different classes of transport organelles in the cell body and are transported by their specific motor proteins through the axon.

[Indexed for MEDLINE]
Free full text

Publication type, MeSH terms, Substances, Secondary source ID

Publication type

MeSH terms


Secondary source ID

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center