Send to

Choose Destination
Biochim Biophys Acta. 1995 May 17;1262(1):15-36.

Guanosine tetraphosphate as a global regulator of bacterial RNA synthesis: a model involving RNA polymerase pausing and queuing.

Author information

Program in Molecular and Cell Biology, University of Texas at Dallas, Richardson 750831, USA.


A recently reported comparison of stable RNA (rRNA, tRNA) and mRNA synthesis rates in ppGpp-synthesizing and ppGpp-deficient (delta relA delta spoT) bacteria has suggested that ppGpp inhibits transcription initiation from stable RNA promoters, as well as synthesis of (bulk) mRNA. Inhibition of stable RNA synthesis occurs mainly during slow growth of bacteria when cytoplasmic levels of ppGpp are high. In contrast, inhibition of mRNA occurs mainly during fast growth when ppGpp levels are low, and it is associated with a partial inactivation of RNA polymerase. To explain these observations it has been proposed that ppGpp causes transcriptional pausing and queuing during the synthesis of mRNA. Polymerase queuing requires high rates of transcription initiation in addition to polymerase pausing, and therefore high concentrations of free RNA polymerase. These conditions are found in fast growing bacteria. Furthermore, the RNA polymerase queues lead to a promoter blocking when RNA polymerase molecules stack up from the pause site back to the (mRNA) promoter. This occurs most frequently at pause sites close to the promoter. Blocking of mRNA promoters diverts RNA polymerase to stable RNA promoters. In this manner ppGpp could indirectly stimulate synthesis of stable RNA at high growth rates. In the present work a mathematical analysis, based on the theory of queuing, is presented and applied to the global control of transcription in bacteria. This model predicts the in vivo distribution of RNA polymerase over stable RNA and mRNA genes for both ppGpp-synthesizing and ppGpp-deficient bacteria in response to different environmental conditions. It also shows how small changes in basal ppGpp concentrations can produce large changes in the rate of stable RNA synthesis.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center