Format

Send to

Choose Destination
Am J Physiol. 1995 Mar;268(3 Pt 1):L501-8.

Pulmonary alveolar epithelial inducible NO synthase gene expression: regulation by inflammatory mediators.

Author information

1
Department of Pediatrics, University of Alabama at Birmingham 35233.

Abstract

Nitric oxide (.NO) is a short-lived mediator that can be induced by different cytokines and lipopolysaccharide (LPS) in a variety of cell types and produces many physiological and metabolic changes in target cells. In the current study, we show that a combination of cytokines, LPS, and zymosan-activated serum (ZAS; called for convenience cytomix Z) induces production of high concentrations of the NO oxidation products nitrite (NO2-) and nitrate (NO3-) by cultured rat fetal lung epithelial type II cells in a time-dependent fashion. Interferon-gamma and tumor necrosis factor-alpha alone did not significantly affect .NO synthesis, whereas ZAS, LPS, and interleukin-1 beta caused only a modest increase in formation of .NO oxidation products. Production of NO2- and NO3- was inhibited by NG-monomethyl-L-arginine and cyclohexmide. After exposure of these cells to a combination of the above cytokines, Escherichia coli LPS, and ZAS (cytomix Z), enhanced inducible nitric oxide synthase (iNOS) expression was indicated by an elevation in steady-state mRNA specific for iNOS (via Northern blot analysis) and increased immunofluorescence for iNOS after cell permeabilization, incubation with anti-iNOS antibody, and treatment with Cy3.18-conjugated rabbit-specific antibody. The extent of inflammatory mediator-induced.NO production by alveolar epithelium, which exceeds that of other lung cell types, reveals new insight into mechanisms of pulmonary host defense and pathways of free radical-mediated lung injury.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center