Send to

Choose Destination
Carbohydr Res. 1995 Aug 11;272(2):241-53.

Isolation and partial characterization of feruloylated oligosaccharides from maize bran.

Author information

Institut National de la Recherche Agronomique, Laboratoire de Biochimie et Technologie des Glucides, Nantes, France.


Maize bran contains phenolic acids [approximately 4% dry matter; mainly ferulic acid (Fe) and also diferulic acid], heteroxylans (approximately 50%), and cellulose (approximately 20%), but is devoid of lignin. Treatment of maize pericarp with 0.05 M trifluoroacetic acid at 100 degrees C for 2 h released approximately 90% of the heteroxylans and approximately 90% of the ferulic acid and its esters. After fractionation of the products with Amberlite XAD-2 and Sephadex LH-20 three main feruloylated oligosaccharides (F3-F7) were isolated. They represented approximately 30% of the ferulic acid, and approximately 2% of the neutral sugars contained in the hydrolysis supernatant. The compositions of F7, F6, and F3 were Fe-Ara (1:1), Fe-Ara-Xyl (1:1:1), and Fe-Ara-Xyl-Gal (1:1:1:1), respectively. The structures of the three oligomers were determined using chemical methods (methylation, acetalation, reduction) and 13C NMR spectroscopy: F7 was 5-O-(trans-feruloyl)-L-Araf;F6 was O-beta-D-Xyl p-(1-->2)-[5-O-(trans-feruloyl)-L-Araf]; and F3 was O-L-Gal p-(1-->4)-O-D-Xyl p-(1-->2)-[5-O-(trans-feruloyl)-L- Araf]. F7 has been previously isolated from other monocots especially from wheat bran and soluble arabinoxylans from wheat flour; this is the first report of feruloylated oligosaccharides F6 and F3. Our results suggest that these oligomers are side-chain constituents of heteroxylans in maize bran. Ferulic acid is probably partly responsible for the insolubility of heteroxylans by coupling polysaccharide chains through ferulic acid dimers.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center