Format

Send to

Choose Destination
Carbohydr Res. 1995 Aug 11;272(2):241-53.

Isolation and partial characterization of feruloylated oligosaccharides from maize bran.

Author information

1
Institut National de la Recherche Agronomique, Laboratoire de Biochimie et Technologie des Glucides, Nantes, France.

Abstract

Maize bran contains phenolic acids [approximately 4% dry matter; mainly ferulic acid (Fe) and also diferulic acid], heteroxylans (approximately 50%), and cellulose (approximately 20%), but is devoid of lignin. Treatment of maize pericarp with 0.05 M trifluoroacetic acid at 100 degrees C for 2 h released approximately 90% of the heteroxylans and approximately 90% of the ferulic acid and its esters. After fractionation of the products with Amberlite XAD-2 and Sephadex LH-20 three main feruloylated oligosaccharides (F3-F7) were isolated. They represented approximately 30% of the ferulic acid, and approximately 2% of the neutral sugars contained in the hydrolysis supernatant. The compositions of F7, F6, and F3 were Fe-Ara (1:1), Fe-Ara-Xyl (1:1:1), and Fe-Ara-Xyl-Gal (1:1:1:1), respectively. The structures of the three oligomers were determined using chemical methods (methylation, acetalation, reduction) and 13C NMR spectroscopy: F7 was 5-O-(trans-feruloyl)-L-Araf;F6 was O-beta-D-Xyl p-(1-->2)-[5-O-(trans-feruloyl)-L-Araf]; and F3 was O-L-Gal p-(1-->4)-O-D-Xyl p-(1-->2)-[5-O-(trans-feruloyl)-L- Araf]. F7 has been previously isolated from other monocots especially from wheat bran and soluble arabinoxylans from wheat flour; this is the first report of feruloylated oligosaccharides F6 and F3. Our results suggest that these oligomers are side-chain constituents of heteroxylans in maize bran. Ferulic acid is probably partly responsible for the insolubility of heteroxylans by coupling polysaccharide chains through ferulic acid dimers.

PMID:
7497481
DOI:
10.1016/0008-6215(95)00053-v
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center