Send to

Choose Destination
Biochim Biophys Acta. 1995 Nov 30;1269(3):275-80.

BAP2, a gene encoding a permease for branched-chain amino acids in Saccharomyces cerevisiae.

Author information

Department of Yeast Genetics, Carlsberg Laboratory, Copenhagen Valby, Denmark.


To select the gene coding for an isoleucine permease, an isoleucine dependent strain (ilv1 cha1) was transformed with a yeast genomic multicopy library, and colonies growing at a low isoleucine concentration were selected. Partial sequencing of the responsible plasmid insert revealed the presence of a previously sequenced 609 codon open reading frame of chromosome II with homology to known permeases. Deletion, extra dosage and C-terminal truncation of this gene were constructed in a strain lacking the general amino acid permease, and amino acid uptake was measured during growth in synthetic complete medium. The following observations prompted us to name the gene BAP2 (branched-chain amino acid permease). Deletion of BAP2 reduced uptake of leucine, isoleucine and valine by 25-50%, while the uptake of 8 other L-alpha-amino acids was unaltered or slightly increased. Introduction of BAP2 on a centromere-based vector, leading to a gene dosage of two or slightly more, caused a 50% increase in leucine uptake and a smaller increase for isoleucine and valine. However, when the 29 C-terminal codons of the plasmid-borne copy of BAP2 were substituted, the cells more than doubled the uptake of leucine, isoleucine and valine, while no or little increase in uptake was observed for the other 8 amino acids.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center