Send to

Choose Destination
Mol Immunol. 1995 Sep;32(13):975-81.

Clip binds to HLA class II using methionine-based, allele-dependent motifs as well as allele-independent supermotifs.

Author information

Department of Immunohematology and Blood Bank, University Hospital, Leiden, The Netherlands.


The invariant chain (Ii) region that interacts with class II and inhibits premature peptide binding has been mapped to amino acids 82-107, known as CLIP. It is unclear whether CLIP binds directly to the class II peptide binding groove and thus competitively blocks binding of other peptides, or whether it binds to conserved class II sites and indirectly inhibits peptide binding by inducing conformational changes in class II. Here we show evidence that strongly suggests that CLIP binds within the peptide binding groove, as CLIP binds to various HLA-DR alleles using allele-dependent as well as allele-independent, methionine-based binding motifs. First, a core sequence of 12 amino acids was identified within CLIP which is required for optimal binding to DR1, DR2, DR3(17) and DR7. This sequence is composed of CLIP p88-99 (SKMRMATPLLMQ). By substitution analysis, all three methionine residues appeared to control CLIP binding to HLA-DR. However, whereas M90 controlled binding to all four alleles, M92 and M98 were of different importance for the various alleles: M92 is involved in CLIP binding to DR1 and DR3(17) but not to DR2 or DR7, and M98 controls CLIP binding to DR2, DR3(17) and DR7 but not DR1. Also, CLIP competes with known immunogenic peptides for class II binding in a manner indistinguishable from regular, class II binding competitor peptides. Finally, the dissociation rates of CLIP-class II complexed are similar to those of antigenic peptide-class II complexes. Thus, CLIP most likely binds to the class II peptide binding groove, since most allelic class II differences are clustered here. CLIP uses unconventional methionine anchor residues representing an allele-independent supermotif (M90) as well as allele-dependent motifs (M92 and M98).

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center