Format

Send to

Choose Destination
Mol Endocrinol. 1995 Aug;9(8):1041-52.

Estradiol and phorbol ester cause phosphorylation of serine 118 in the human estrogen receptor.

Author information

1
Department of Biology, University of Vermont, Burlington 05405, USA.

Abstract

Serine 118 is definitively identified as a major site of phosphorylation in the human estrogen receptor expressed in COS-1 cells treated with estradiol or phorbol ester. At least 30% of the estrogen receptor appears to be phosphorylated on serine 118 after treatment with estradiol or phorbol ester. Human estrogen receptor was expressed in COS-1 cells and labeled in vivo with [32P]orthophosphate in the presence of estradiol or phorbol ester. Immunopurified receptor was digested with cyanogen bromide. The most heavily labeled peptide (7 kilodaltons) was identified as amino acids 110-174 by microsequencing. Manual Edman degradation released a major portion of the 32P-label in the peptide at serine 118. A mutant with serine 118 replaced by alanine (S118A) had 80% less 32P-label in the 7 kilodalton peptide. Estrogen receptor labeled in vivo with [32P]-orthophosphate in the presence of estradiol or phorbol ester migrates electrophoretically as a doublet. The major difference between the bands is phosphorylation of serine 118 in the upshifted band. The mutant S118A does not show an upshifted band. Labeling of the estrogen receptor with [35S]methionine indicates that > or = 30% of the receptor is upshifted and suggests that > or = 30% of the receptor is phosphorylated on serine 118.

PMID:
7476978
DOI:
10.1210/mend.9.8.7476978
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Silverchair Information Systems
Loading ...
Support Center