Send to

Choose Destination
J Physiol. 1995 Jul 15;486 ( Pt 2):283-95.

Imaging of calcium variations in living dendritic spines of cultured rat hippocampal neurons.

Author information

Department of Neurobiology, Weizmann Institute, Rehovot, Israel.


1. Cultured rat hippocampal neurons were loaded with the Ca2+ indicator fura-2 through micropipettes and visualized with an inverted microscope equipped with a high power objective and a cooled CCD camera. The responses of dendritic spines and their parent dendrites to stimuli which evoke a rise of [Ca2+]i were monitored. 2. NMDA caused a rapid and transient rise in [Ca2+]i, which was more evident in the spine than in the parent dendrite. The recovery in both compartments had the same time course, and was dependent on normal [Na+]o. 3. Application of alpha-latrotoxin, which causes release of neurotransmitters from terminals, produced a rise of [Ca2+]i in the dendritic spines, more than in their parent dendrites. Prolonged exposure to the drug eliminated the spine/dendrite disparity. 4. The presence of voltage-gated calcium channels in dendritic spines is indicated by the enhanced calcium rise in spines rather than dendrites of cells depolarized by either intracellular current injection or by raising [K+]o. This rise was attenuated by nifedipine or verapamil, both L-type channel blockers. 5. It is suggested that the dendritic spine constitutes an independent calcium compartment that is closely linked to the parent dendrite.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Wiley Icon for PubMed Central
Loading ...
Support Center