Properties of kinesthetic neurons in somatosensory cortex of awake monkeys

Brain Res. 1981 Jun 15;214(2):301-19. doi: 10.1016/0006-8993(81)91196-3.

Abstract

(1) To study neural mechanisms used to encode kinesthetic information in somatosensory cortex of awake monkeys, we recorded from 227 single neurons responsive to joint movement or specific postures of the forelimb or hand (kinesthetic neurons). Unit responses were characterized quantitatively with respect to: (a) firing patterns; (b) responses to ramp changes in joint position and joint velocity; and (c) responses to sinusoidal joint movements. (2) Kinesthetic neurons were divided into 3 groups. Rapidly-adapting neurons (44%) responded only to joint movement, giving a burst of impulses proportional to velocity. They showed no tonic responses to limb posture. Two populations of tonically active neurons were observed: slowly-adapting neurons (43%) and postural neurons (13%). Both types increased their firing rates with increasing degrees of flexion or extension, showing maximum excitation at the extremes of joint position in the preferred direction. They were distinguished by their sensitivity to the velocity of movement, the size of the angle over which they respond, and the phase relation of their responses to sinusoidal joint movement. (3) The firing rates of kinesthetic neurons in S-I cortex are functions of both joint angle and joint velocity. The importance of each component varies in the 3 classes: velocity of movement is the most important determinant of firing rates of rapidly-adapting and slowly-adapting kinesthetic neurons, and joint angle predominates the responses of postural neurons.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Evoked Potentials
  • Forelimb / innervation
  • Joints / innervation
  • Kinesthesis / physiology*
  • Macaca mulatta
  • Motor Activity / physiology
  • Muscles / innervation
  • Neurons / physiology
  • Posture
  • Somatosensory Cortex / physiology*