Format

Send to

Choose Destination
See comment in PubMed Commons below
Biochim Biophys Acta. 1980 Dec 3;593(2):427-40.

Lateral heterogeneity in the distribution of chlorophyll-protein complexes of the thylakoid membranes of spinach chloroplasts.

Abstract

The lateral distribution of the main chlorophyll-protein complexes between appressed and non-appressed thylakoid membranes has been studied. The reaction centre complexes of Photosystems I and II and the light-harvesting complex have been resolved by an SDS-polyacrylamide gel electrophoretic method which permits most of the chlorophyll to remain protein-bound. The analyses were applied to subchloroplast fractions shown to be derived from different thylakoid regions. Stroma thylakoids were separated from grana stacks by centrifugation following chloroplast disruption by press treatment or digitonin. Vesicles derived from the grana partitions were isolated by aqueous polymer two-phase partition. A substantial depletion in the amount of Photosystem I chlorophyll-protein complex and an enrichment in the Photosystem II reaction centre complex and the light-harvesting complex occurrred in the appressed grana partition region. The high enrichment in this fraction compared to grana stack fractions derived from press or digitonin-treatments, suggests that the grana Photosystem I is restricted mainly to the non-appressed grana end membranes and margins, and that the grana partitions possess mainly Photosystem II reaction centre complex and the light-harvesting complex. In contrast, stroma thylakoids are highly enriched in the Photosystem I reaction centre complex. They possess also some 10--20% of the total Photosystem II reaction centre complex and the light-harvesting complex. The ratio of light-harvesting complex to Photosystem II reaction centre complex is rather constant in all subchloroplast fractions suggesting a close association between these complexes. This was not so for the ratio of light-harvesting complex and the Photosystem I reaction centre complex. The lateral heterogeneity in the distribution of the photosystems between appressed and non-appressed membranes must have a profound impact on current understanding of both the distribution of excitation energy and photosynthetic electron transport between the photosystems.

PMID:
7236643
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Support Center