Format

Send to

Choose Destination
Biophys J. 1982 Jul;39(1):83-9.

Extensional flow of erythrocyte membrane from cell body to elastic tether. II. Experiment.

Abstract

This is the second of two papers on an analytical and experimental study of the flow of erythrocyte membrane. In the experiments discussed here, preswollen human erythrocytes are sphered by aspirating a portion of the cell membrane into a small micropipette; and long, thin, membrane filaments or tethers are steadily withdrawn from the cell at a point diametrically opposite to the point of aspiration. The aspirated portion of the membrane furnishes a reservoir of material that replaces the membrane as it flows as a liquid from the nearly spherical cell body to the cylindrical tether. The application of the principle of conservation of mass permits the tether radius Rt to be measured with the light microscope as the tether is formed and extended at a constant rate. The tether behaves as an elastic solid such that the tether radius decreases as the force or axial tension acting on the tether is increased. For the range of values for Rt is these experiments (100 A less than or equal to Rt less than or equal to 200 A), the slope of the tether-force, tether-radius line is -1.32 dyn/cm. The surface viscosity of the membrane as it flows from cell body to tether is 3 x 10(-3) dyn.s/cm. This viscosity is essentially constant for characteristic rates of deformation between 10 and 200 s-1.

PMID:
7104454
PMCID:
PMC1328913
DOI:
10.1016/S0006-3495(82)84493-7
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center