Send to

Choose Destination
See comment in PubMed Commons below
Biochem J. 1982 Feb 15;202(2):445-52.

Control of adenine nucleotide metabolism in hepatic mitochondria from rats with ethanol-induced fatty liver.


Male rats developed fatty liver after being fed on an ethanol-containing diet for 31 days. Liver mitochondria from these animals catalysed ATP synthesis at a slower rate when compared with mitochondria from pair-fed control rats (control mitochondria), and demonstrated lowered respiratory control with succinate as substrate, owing to a decrease in the State-3 respiratory rate. Respiration in the presence of uncoupler was comparable in mitochondria from both groups of rats. Translocation of both ATP and ADP was decreased in mitochondria from ethanol-fed rats, with ADP uptake being lowered more dramatically by ethanol feeding. Parameters influencing adenine nucleotide translocation were investigated in mitochondria from ethanol-fed rats. Experiments performed suggested that lowered adenine nucleotide translocation in these mitochondria is not the result of inhibition of the translocase by either long-chain acyl-CoA derivatives or unesterified fatty acids. Analysis of endogenous adenine nucleotides in these mitochondria revealed lowered ATP concentrations, but no decrease in total adenine nucleotides. In experiments where the endogenous ATP in these mitochondria was shifted to higher concentrations by incubation with oxidizable substrates or defatted bovine serum albumin, the rate of ADP translocation was increased, with a linear correlation being observed between endogenous ATP concentrations and the rate of ADP translocation. The depressed ATP concentration in mitochondria from ethanol-fed rats suggests that the ATP synthetase complex is replenishing endogenous ATP at a slower rate. The lowered ATPase activity of the ATP synthetase observed in submitochondrial particles from ethanol-fed animals suggests a decrease in the function of the synthetase complex. A decrease in the rate of ATP synthesis in mitochondria from ethanol-fed rats is sufficient to explain the decreased ADP translocation and State-3 respiration.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons


    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center