Send to

Choose Destination
See comment in PubMed Commons below
Biophys J. 1982 Feb;37(2):475-87.

Muscle diffraction theory. Relationship between diffraction subpeaks and discrete sarcomere length distributions.


A theoretical discussion is presented that describes the diffraction on monochromatic light by a three-dimensional sarcomere array having the following properties. The basic repetitive diffracting unit is the sarcomere. The contiguous arrangement of physically attached serial sarcomeres in the myofibril is contained within the model so that relative position of sarcomeres depend upon the lengths of intervening ones. Sarcomere length is described by a distribution function. This function may be discrete or continuous and contain one or more subpopulations. Two arrangements of sarcomeres are considered: (a) when sarcomeres of different lengths are arranged randomly in myofibrils the amplitude and width of mth order (m greater than or equal to 1) peaks and associated secondary diffraction maxima decrease and increase monotonically, respectively, as the standard deviation of the length distribution increases. No subpeaks are present regardless of the number of subpopulations within the distribution function. This behavior is shown to follow from the dependence of sarcomere position on the length of intervening sarcomeres. (b) When sarcomeres belonging to the same length subpopulation are arranged in serial contiguous fashion to form domains and more than one length subpopulation is present, then mth order diffraction peaks split to form subpeaks. The theoretical basis for this behavior is developed for the first time and may explain the subpeaks evident in diffraction patterns from cardiac and skeletal muscle.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center