Format

Send to

Choose Destination
Mol Cell Biochem. 1982 May 28;45(1):13-31.

Steroidogenic electron transport in adrenal cortex mitochondria.

Abstract

The flavoprotein NADPH-adrenodoxin reductase and the iron sulfur protein adrenodoxin function as a short electron transport chain which donates electrons one-at-a-time to adrenal cortex mitochondrial cytochromes P-450. The soluble adrenodoxin acts as a mobile one-electron shuttle, forming a complex first with NADPH-reduced adrenodoxin reductase from which it accepts an electron, then dissociating, and finally reassociating with and donating an electron to the membrane-bound cytochrome P-450 (Fig. 9). Dissociation and reassociation with flavoprotein then allows a second cycle of electron transfers. A complex set of factors govern the sequential protein-protein interactions which comprise this adrenodoxin shuttle mechanism; among these factors, reduction of the iron sulfur center by the flavin weakens the adrenodoxin-adrenodoxin reductase interaction, thus promoting dissociation of this complex to yield free reduced adrenodoxin. Substrate (cholesterol) binding to cytochrome P-450scc both promotes the binding of the free adrenodoxin to the cytochrome, and alters the oxidation-reduction potential of the heme so as to favor reduction by adrenodoxin. The cholesterol binding site on cytochrome P-450scc appears to be in direct communication with the hydrophobic phospholipid milieu in which this substrate is dissolved. Specific effects of both phospholipid headgroups and fatty acyl side-chains regulate the interaction of cholesterol with its binding side. Cardiolipin is an extremely potent positive effector for cholesterol binding, and evidence supports the existence of a specific effector lipid binding site on cytochrome P.450scc to which this phospholipid binds.

PMID:
7050653
DOI:
10.1007/bf01283159
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center