Format

Send to

Choose Destination
See comment in PubMed Commons below
J Bacteriol. 1982 May;150(2):878-89.

Possible mechanism for flocculation interactions governed by gene FLO1 in Saccharomyces cerevisiae.

Abstract

A model is proposed for the mechanism of flocculation interactions in yeasts in which flocculent cells have a recognition factor which attaches to alpha-mannan sites on other cells. This factor may be governed by the expression of the single, dominant gene FLO1. Isogenic strains of Saccharomyces cerevisiae, differing only at FLO1 and the marker genes ade1 and trp1, were developed to examine the components involved in flocculene. Electron microscopy and concanavalin Aferritin labeling of aggregated cells showed that extensive and intense interactions between cell wall mannan layers mediated cell aggregation. The components of the mannan layer essential for flocculence were Ca2+ ions, alpha-mannan carbohydrates, and proteins. By studying the divalent cation dependence at various pH values and in the presence of competing monovalent cations, flocculation was found to be Ca2+ dependent; however, Mg2+ and Mn2+ ions substituted for Ca2+ under certain conditions. Reversible inhibition of flocculation by concanavalin A and succinylated concanavalin A implicated alpha-branched mannan carbohydrates as one essential component which alone did not determine the strain specificity of flocculence, since nonflocculent strains interacted with and competed for binding sites on flocculent cells. FLO1 may govern the expression of a proteinaceous, lectin-like activity, firmly associated with the cell walls of flocculent cells, which bind to the alpha-mannan carbohydrates of adjoining cells. It was selectively and irreversibly inhibited by proteolysis and reduction of disulfide bonds. The potential of this system as a model for the genetic and biochemical control of cell-cell interactions is discussed.

PMID:
7040343
PMCID:
PMC216441
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center