Send to

Choose Destination
See comment in PubMed Commons below
J Bacteriol. 1983 Feb;153(2):627-34.

Transfer of resistance plasmids from Staphylococcus epidermidis to Staphylococcus aureus: evidence for conjugative exchange of resistance.


The ability of Staphylococcus epidermidis to transfer antimicrobial resistance to Staphylococcus aureus was tested by mixed culture on filter membranes. Two of six clinical isolates examined were able to transfer resistance to S. aureus strains 879R4RF, RN450RF, and UM1385RF. Subsequent S.aureus transconjugants resulting from matings with S. epidermidis donors were able to serve as donors to other S. aureus strains at similar frequencies. Cell-free and mitomycin C-induced filtrates of donors and transconjugants showed no plaque-forming ability. Addition of DNase I, citrate, EDTA, calcium chloride, and human sera to mating mixes and agar showed no effect on transfer. Nonviable donor cells were unable to transfer resistance and transfer did not occur at 4 degrees C. Cell-to-cell contact was required since transfer did not occur in broth or when filters of donor and recipient, respectively, were placed back-to-back so cells were not in direct contact. Analysis of DNA from S. epidermidis isolate UM899, its subsequent S. aureus transconjugants, and cured derivatives demonstrated that all resistance markers which transferred resided on plasmids. Mating experiments suggested a central role for the gentamicin plasmid pAM899-1 in the transfer process. It is concluded that our results are consistent with a conjugative transfer of resistance from S. epidermidis to S. aureus analogous to plasmid transfer demonstrated in streptococcal species for plasmids such as pAM beta 1. This represents a novel mechanism for gene exchange among staphylococci.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center