Send to

Choose Destination
Can J Microbiol. 1981 Jul;27(7):704-19.

Constriction and septation during cell division in caulobacters.


Morphogenesis of the division site in caulobacters had been described as constrictive in Caulobacter spp. and septate in Asticcacaulis excentricus. However, subsequent studies of other gram-negative genera had implied that constrictive division was an artefact resulting from inadequate preservation of septa; exploration of alternatives to osmium fixation, particularly with aldehydes, was recommended. In this study, the appearance of sectioned division sites was reinvestigated in caulobacter cells prepared by 20 different procedures varying with respect to fixation agents, media, schedules, and temperatures, to dehydrating agents, and to embedding resins. Three types of division site morphogenesis were observed: constriction in C. bacteroides and C. crescentus, partial septation in C. leidyi, and complete, undivided septation in A. excentricus and A. biprosthecum. The anatomy of the division site depended on the bacterial strain, not on the method of preparation of the cells for sectioning. These studies confirm the earlier observations on osmium-fixed caulobacter cells and lead to the general conclusion that gram-negative bacteria with tapered poles probably divide by constriction, whereas septation results in blunt cell poles. A pattern of spiral, rather than circular, insertion of new envelope subunits at the cell equator is proposed as a basic developmental difference between constrictive and septate fission in gram-negative bacteria. Since caulobacter prosthecae can develop as extensions of tapered poles formed by constriction, whereas subpolar or lateral prosthecae occur in species with blunt poles resulting from septation, the site of formation of a thick septum appears unsuitable as a site of subsequent envelope outgrowth.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center