Send to

Choose Destination
J Gen Microbiol. 1982 Apr;128(4):747-59.

beta-Glucanases from Candida albicans: purification, characterization and the nature of their attachment to cell wall components.


beta-Glucanase activities were found associated with Candida albicans and their culture fluids. Mild acid treatment of the organisms led to rapid inactivation of beta-glucanase activities, the degree of loss increasing with the age of the cultures; the results suggested an extracytoplasmic location of the cell-associated enzymes. Most of the beta-glucanase activities were associated with the cell walls in organisms phenotypically resistant to amphotericin B methyl ester (AME). Two proteins (I and II) exhibiting beta-glucanase activity were isolated and purified by conventional procedures from cell-free extracts, cell-wall autolysates and culture fluids of C. albicans sensitive and phenotypically resistant to AME. The purified enzymes appeared homogeneous on isoelectric focusing, gel electrophoresis and ultracentrifugation, with molecular weights of 150000 (I) and 49000 (II). Both enzymes hydrolysed cell walls purified from AME-sensitive and phenotypically resistant organisms, but showed different substrate specificities and patterns of activity. Enzyme II hydrolysed (1 leads to 3)-beta-glycans by an endolytic mechanism releasing laminaritetraose as the initial product. Glucose was the only product released by enzyme I. The properties of th individual enzymes were unaffected by their localization or the age of the culture of the organisms. The loosening of the polysaccharide packing by ultrasonic treatment of cell walls purified from AME-resistant organisms increased the beta-glucanase activities bound to the walls, but did not solubilize them. Autolysis of cell walls released 58 to 66% of their beta-glucanase activity in 20 h, but no further release was attained on prolonged incubation. The amount of beta-glucanase activity released by autolysis was increased by a variety of pretreatments. Diethyl pyrocarbonate inhibited beta-glucanase activity and prevented autolysis. Evidence is presented indicating that interactions with lipids, polysaccharides and other cell wall proteins may be involved in the control of the activity of the cell wall-associated beta-glucanases in organisms phenotypically resistant to AME.

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center