Send to

Choose Destination
Arch Biochem Biophys. 1984 Jul;232(1):249-58.

The role of lysophosphatidylcholine in lipid synthesis by developing sunflower (Helianthus annuus L.) seed microsomes.


The incorporation of oleate from oleoyl-CoA into lipids by microsomes from developing sunflower (Helianthus annuus L.) seeds has been investigated. Oleate was incorporated mainly into position 2 of phosphatidylcholine or released as free fatty acid. The addition of exogenous 1-acyl-lysophosphatidylcholine increased the incorporation of oleate into position 2 of phosphatidylcholine and decreased the release of free oleate. In the absence of exogenous lysophosphatidylcholine, the incorporation of oleate into phosphatidylcholine was limited by the amount of endogenous acceptor present. DH-990, an inhibitor of acyl-CoA:lysophosphatidylcholine acyltransferase, almost completely inhibited the incorporation of oleate from oleoyl-CoA into phosphatidylcholine at a concentration of 2.5 mM. These results indicate that the incorporation of oleate from oleoyl-CoA into microsomal phosphatidylcholine occurs mainly by the acylation of a 1-acyl-lysophosphatidylcholine acceptor rather than by acyl exchange between oleoyl-CoA and phosphatidylcholine. While the incorporation of oleoyl-CoA was completed within 2 to 5 min, exogenous 1-acyl-lysophosphatidylcholine was incorporated into phosphatidylcholine for up to 30 min. Addition of oleoyl-CoA resulted in an increase in both the rate and magnitude of lysophosphatidylcholine incorporation, which could not be accounted for by a stoichiometric reaction between the two substrates. Evidence is provided that free CoA had an independent stimulatory effect on the incorporation of lysophosphatidylcholine. The implications of this finding are discussed.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center