A morphological study on gills of a crab acclimated to fresh water

Tissue Cell. 1983;15(4):583-96. doi: 10.1016/0040-8166(83)90009-5.

Abstract

The gills of the fully euryhaline Chinese crab Eriocheir sinensis were studied by light and electron microscopy. In these Phyllobranchiates, the gills consist of a double row of lamellae extending laterally from a central shaft. Haemolymph flow pattern inside the gill is described and the existence of a complex secondary vascularization inside the platelets is reported. It is shown that important differences exist between the ultrastructure of the three anterior and the three posterior pairs of large gills. The epithelium of the posterior gills is much thicker and possesses an extensive elaboration of the plasma membranes in the form of infoldings, crypts and interdigitations, along which are packed numerous mitochondria. The presence of such a complex membrane system opening to the extracellular space and closely associated with mitochondria is common to all salt-transporting tissues. This study corroborates the idea that the posterior pairs of gills of Eriocheir sinensis are the only ones implicated in active Na+ uptake when the crab lives in dilute aquatic environment. The epithelium of anterior gills is much thinner and the cells poor in intracellular organelles. It seems to be involved essentially in respiration. Thus this work clearly corroborates the existence already suggested by physiological approach of a functional difference between the different pairs of E. sinensis branchiae with respect to their participation in the respiration and in the regulation of the blood ions content. Common to both types of gills is the presence of a lamellar septum separating the haemolymph space into two compartments. The part played by that structure in determining the pattern of haemolymph flow, together with periodic bridges forming pillars across the haemolymph space, is emphasized.

MeSH terms

  • Animals
  • Brachyura / physiology*
  • Fresh Water
  • Gills / physiology
  • Gills / ultrastructure*
  • Microscopy, Electron
  • Water-Electrolyte Balance*