Format

Send to

Choose Destination
J Biol Chem. 1984 Aug 10;259(15):9447-55.

Tetrahydromethanopterin, a carbon carrier in methanogenesis.

Abstract

Evidence obtained by 13C NMR spectroscopy indicates that tetrahydromethanopterin (H4MPT) serves as a carbon carrier for C1 units at the methine, methylene, and methyl levels of oxidation. All three derivatives of H4MPT served as substrates for methanogenesis by cell extracts under a hydrogen atmosphere; in each instance, methane evolved at a rate comparable to that obtained when 2-(methylthio)ethanesulfonic acid was used as the substrate. Each C1 derivative of H4MPT stimulated the reduction of CO2 as efficiently as 2-(methylthio)ethanesulfonic acid. High resolution fast atom bombardment mass spectrometry indicated that the product of the spontaneous reaction of formaldehyde with H4MPT was methylene-H4MPT, with the molecular formula C31H45N6O16P. 13C NMR spectroscopy of hexamethylenetetramine, a model compound, suggested that the methylene group in methylene-H4MPT was bound to two nitrogen atoms. Molecular formulas of C31H44N6O16P and C31H47N6O16P were assigned to methenyl-H4MPT+, and methyl-H4MPT, by high resolution fast atom bombardment mass spectrometry. 1H NMR spectroscopy of methyl-H4MPT indicated that the methyl group was bound to a nitrogen atom. Sensitivity of each derivative to oxygen was noted. Apparent extinction coefficients of H4MPT and its derivatives were recorded. Evidence for the enzymatic synthesis of methylene-H4MPT from methenyl-H4MPT+ is presented.

PMID:
6547718
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center