Format

Send to

Choose Destination
J Mol Biol. 1984 Jul 15;176(4):477-93.

Molecular organization of paramyosin in the core of molluscan thick filaments.

Abstract

An arrangement of paramyosin molecules in the polar part of molluscan thick filaments is proposed which accounts for the X-ray diffraction pattern of the smooth adductor muscle (other than the part ascribed to actin) and for the appearance of separated filaments in the electron microscope. The proposed structure is based on the PI arrangement of Cohen et al. (1971), and contains sets of parallel, equidistant molecules with successive molecules displaced along the molecular axis by 72 nm, which we call PI sheets. Every molecule belongs to two PI sheets which are nearly perpendicular. This array is not propagated throughout the filament, but is sheared periodically in the direction of the molecular (filament) axis by 2/5 X 72 nm. The shear occurs along parallel equidistant planes which are inclined to the PI sheets. The analysis of the X-ray data has been made possible by concentrating on those patterns from filaments in which the two sets of PI sheets appear to be mutually perpendicular, a condition brought about by bathing the muscle in aqueous acetone. In one set, there are four intermolecular spaces between shear planes (this appears to be true at least for the smooth adductors of Ostrea edulis, Crassostrea angulata and Mercenaria mercenaria). In the other set, the number varies with species and probably lies between eight and ten in the first two and appears to be six in the last named species. The known paracrystalline nature of paramyosin filaments suggests that this number, though dominant in one species, is not exactly constant.

PMID:
6540314
DOI:
10.1016/0022-2836(84)90173-6
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center