Towards an improved serum-free, chemically defined medium for long-term culturing of cerebral cortex tissue

Neurosci Biobehav Rev. 1984 Fall;8(3):301-34. doi: 10.1016/0149-7634(84)90055-1.

Abstract

The present study describes a series of experiments which have led to a substantially improved serum-free, chemically defined medium (CDM) for long-term culturing of reaggregated fetal rat cerebral cortex tissue. A reduction of the original medium concentrations of the hormones insuline, T3 and corticosterone, on the one hand, and an enrichment of the medium with the vitamins A, C and E, the unsaturated fatty acids linoleic and linolenic acid, and biotin, L-carnitine, D(+)-galactose, glutathione (reduced) and ethanolamine, on the other hand, formed the most important chemical adjustments of the medium. With the aid of this CDM (encoded R12), the light- and electron microscopic architecture of the tissue could be kept in a good condition (superior to that seen earlier in serum-supplemented medium) up to 23 days in vitro. From that time on, the neuronal network lying between the reaggregates degenerated for the largest part, while a portion of the large neurons (probably pyramidal cells) plus some of the neuronal network within the reaggregates degenerated too. This degeneration process continued during the following weeks, but the reaggregates nevertheless retained most of their mass, so that both small and large neuronal cell bodies (visible in transparent regions at the edge of the reaggregates) remained in good condition up to at least 103 DIV. Stout, thick nerve bundles interconnecting the reaggregates, also survived up to this point. Electron microscopic evaluation of such 'aged' reaggregates revealed degenerating as well as healthy regions. The latter had indeed retained healthy-looking pyramidal and non-pyramidal neurons, embedded within a dense neuropil which was often traversed by myelinated axons. The numerical synapse density in such selected, healthy tissue regions reached its maximum during the sixth week in vitro, followed by a rapid decrease and a stabilization at about half the peak values. The present culture system has opened the possibility for performing controlled quantitative studies on the relationship between structure and function of cerebral cortex tissues during development and aging, on its dependence on nutrients, hormones and drugs, and on special factors synthesized by the tissue and released into the nutrient medium.

MeSH terms

  • Animals
  • Astrocytes / cytology
  • Axons / ultrastructure
  • Cell Differentiation*
  • Cerebral Cortex / cytology*
  • Culture Media*
  • Culture Techniques
  • Dendrites / ultrastructure
  • Microscopy, Electron
  • Nerve Net / cytology
  • Neurons / classification
  • Neurons / cytology
  • Rabbits
  • Synapses / ultrastructure

Substances

  • Culture Media