Send to

Choose Destination
Biochemistry. 1984 Sep 11;23(19):4416-20.

Analysis of the ternary interaction of the red cell membrane skeletal proteins spectrin, actin, and 4.1.


Spectrin dimers interact weakly with F-actin under physiological solvent conditions (with an association constant of about 5 X 10(3) M-1 at 20 degrees C). In the presence of the membrane skeletal constituent, protein 4.1, strong binding is observed; an analysis of the profiles for formation of a ternary complex leads to an association constant of about 1 X 10(12) M-2. This association becomes weaker at low ionic strength, whereas the opposite applies to the spectrin-actin interaction. The stability of the ternary complex is maximal at physiological ionic strength and somewhat above. The effect of temperature in the range 0-20 degrees C on the formation of the ternary complex is small, whereas the spectrin-actin interaction almost vanishes at low temperature. There is no detectable calcium sensitivity in either the binary or the ternary system within the limits of precision of our assay. The ternary complex resembles the natural system in the membrane in that the actin is resistant to dissociation and unavailable in the deoxyribonuclease assay; after selective proteolytic destruction of spectrin and 4.1, all the actin becomes available. In the absence of 4.1, spectrin dimers do not measurably protect the actin against dissociation.

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center