Format

Send to

Choose Destination
Cell. 1980 Jul;20(3):749-60.

Secretion of beta-lactamase requires the carboxy end of the protein.

Abstract

Synthesis and secretion of beta-lactamase were studied in Salmonella typhimurium infected with P22 phage carrying the structural gene for beta-lactamase (the bla gene) in mutant or wild-type form. The wild-type gene was shown to specify two forms of beta-lactamase which differ in molecular weight by about 2500 daltons. This difference is consistent with removal, predicted on other grounds, of 23 amino-terminal residues (the "signal" sequence). All bla- mutants, including chain-terminating mutants lacking as much as 50% or as little as 10% of the protein, were apparently unaffected in this processing step. Pulse-chase experiments showed that more than 85% of the wild-type (as well as mutant) proteins are synthesized as complete overlength precursors before being processed to their mature forms. Virtually all the mature wild-type protein appears in the periplasmic space whereas a large fraction of the precursor appears in the cytoplasm. In contrast, both the precursor and processed forms of beta-lactamase proteins synthesized by chain-terminating mutants (including one which lacks only 10% of its residues from the carboxy end) are not secreted and apparently remain soluble in the cytoplasm. These results show that the carboxy-terminal amino acid sequence (at least) of beta-lactamase is essential to successful transport across the cytoplasmic membrane, and suggest that the presence (and probably also the act of removal) of the signal sequence does not suffice to ensure secretion.

PMID:
6448092
DOI:
10.1016/0092-8674(80)90321-9
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center