Send to

Choose Destination
See comment in PubMed Commons below
Biochemistry. 1983 Feb 15;22(4):792-9.

Dynamic aspects of insulin action: synchronization of oscillatory glycolysis in isolated perifused rat fat cells by insulin and hydrogen peroxide.


Glucose oxidation to CO2 was investigated in isolated perifused rat epididymal fat cells. Insulin stimulated rates of oxidation up to 30-fold. Multiple pulses of insulin or prolonged perifusion with the hormone led to a time-dependent desensitization of the cells. The action of insulin could be mimicked by H2O2. Reversal of H2O2 effects was associated with a damped oscillation of large initial amplitude. Initiation of perifusion with insulin induced rates of glucose oxidation that oscillated around a mean elevated rate with an amplitude of about +/- 4% of the mean, significantly larger than the measurement error. Basal rates did not show clear oscillations. The oscillations after insulin had a statistically significant period of around 14 min. The results were the same with C1- or C6-labeled glucose and occurred in the presence of both 0.275 and 5.5 mM glucose in the perifusion medium. The oscillations were interpreted as the result of insulin- or H2O2-induced synchronization of oscillatory glycolysis by individual fat cells. The similarity of the observed oscillatory period with the period of oscillatory insulin secretion by pancreatic beta cells suggests that oscillatory glycolysis may constitute the internal pacemaker for the latter process.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Loading ...
    Support Center