Format

Send to

Choose Destination
J Physiol. 1984 Mar;348:187-207.

Calcium current activation kinetics in neurones of the snail Lymnaea stagnalis.

Abstract

Both the activation kinetics and the magnitude of the Ca current in Lymnaea are strongly dependent on temperature. The Q10 for the reciprocal of the activation time constant is 4.9 +/- 0.2 and the Q10 for the maximum current is 2.3 +/- 0.1. By lowering the temperature to 7-10 degrees C, we have been able to resolve the Ca tail currents. The block of Ca current by Cd2+ is voltage dependent, being more effective at more positive potentials. As determined from the magnitude of the tail currents, the Ca permeability is not maximally activated until the membrane potential is greater than +70 mV. The Ca permeability is half activated in the range 30-35 mV. The open-channel current-voltage relation for the Ca current is in rough agreement with the prediction of the constant-field equation. There is no indication of current saturation at negative potentials for potentials down to -60 mV. The Ca tail current decays with at least two time constants, one 200-400 microseconds and the other 2-4 ms. Although these time constants are not strongly voltage dependent, the ratio of the amplitude of the fast component of the tail current to that of the slow component is much larger at -60 mV than at 0 mV. The time course of the Ba tail current is very similar to that of the Ca tail current. The time course of the activation of the Ca current follows m2 kinetics and does not show evidence for a Cole-Moore-type shift for holding potentials between -50 and -110 mV. During a second positive pulse applied 1 ms after the first, the Ca current activates more rapidly, without the delay characteristic of the Ca current of a single positive pulse. The activation of the Ca current can be represented by a linear sequential model. The simplest model that describes both the turn-on and the turn-off of the Ca current must have at least three closed states, followed by a single open state.

PMID:
6325671
PMCID:
PMC1199397
DOI:
10.1113/jphysiol.1984.sp015105
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Wiley Icon for PubMed Central
Loading ...
Support Center