Format

Send to

Choose Destination
Eur J Biochem. 1983 Feb 1;130(2):309-14.

Two proteolytic degradation products of calf-thymus poly(ADP-ribose) polymerase are efficient ADP-ribose acceptors. Implications for polymerase architecture and the automodification of the polymerase.

Abstract

Two polypeptides with molecular masses of 76 and 59 kDa were found to copurify with poly(ADP-ribose) polymerase from calf thymus, and to be as efficient acceptors of ADP-ribose as the polymerase itself. Analysis of their CNBr fragments by sodium dodecylsulfate/polyacrylamide gel electrophoresis revealed that the polypeptides were derived from the 112-kDa polymerase. Isolation of poly(ADP-ribose) polymerase in the absence of protease inhibitors resulted in a loss of more than 90% of the polymerase activity and an increased proportion of the 76-kDa and 59-kDa polypeptides in the final polymerase preparation. When the polymerase and the two polypeptides were separated by gel filtration or polyacrylamide gel electrophoresis in 5% acetic acid, no polymerase activity was found associated with the two fragments. Analysis of the CNBr fragments of the three polypeptides after incubation of the enzyme preparation with [32P]NAD showed that most of the fragments were radioactive, indicating multiple ADP-ribosylation sites. Several ADP-ribosylated fragments were found to be common to all three polypeptides, or to two of them.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center