Format

Send to

Choose Destination
Cell. 1981 Jan;23(1):61-71.

Evidence that microtubule depolymerization early in the cell cycle is sufficient to initiate DNA synthesis.

Abstract

Microtubule disrupting drugs initiated DNA synthesis in serum-free cultures of nonproliferating fibroblast-like cells. The addition of colchicine to chick, mouse and human fibroblasts in serum-free medium stimulated thymidine incorporation at least twofold, with a half-maximal concentration of 1 X 10(-7) M. This stimulation represented up to 75% of the maximal stimulation by thrombin and was paralleled by an increase in the percentage of labeled nuclei. Other microtubule disrupting drugs showed similar stimulation, whereas lumicolchicine had no effect. Indirect immunofluorescent staining of tubulin showed a correlation between microtubule depolymerization and initiation of DNA synthesis by these drugs. A 2 hr treatment with 10(-6) M colchicine caused complete disruption of the microtubular network and stimulated thymidine incorporation (measured 28 hr later) to an even greater extent than continuous colchicine exposure. A similar 2 hr exposure to 10(-6) M colcemid also stimulated thymidine incorporation and led to a 50% increase in cell number. Taxol, a drug which stabilizes cytoplasmic microtubules, blocks initiation of DNA synthesis by colchicine, indicating that microtubule depolymerization is necessary for this initiation. To determine if microtubule depolymerization is involved in stimulation of DNA synthesis by other growth factors, highly purified human thrombin was added to cells with or without colchicine. In no case did colchicine plus thrombin increase DNA synthesis above that of the maximal stimulation by thrombin alone. Furthermore, pretreatment of cultures with taxol (5 micrograms/ml) inhibited approximately 30% of the stimulation of thymidine incorporation by thrombin. Together, these studies demonstrate that microtubule depolymerization is sufficient to initiate both DNA synthesis and events leading to cell division and suggest that microtubule depolymerization may be a required step in initiation of cell proliferation by growth factors such as highly purified human thrombin.

PMID:
6111398
DOI:
10.1016/0092-8674(81)90270-1
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center