Send to

Choose Destination
Cell Mol Neurobiol. 1984 Sep;4(3):273-84.

Divalent cation effects on acetylcholine-activated channels at the frog neuromuscular junction.


The effects of the divalent cations Ca and Mg on the properties of ACh-activated channels at the frog neuromuscular junction were studied using a two-microelectrode voltage clamp. The divalent cation concentration was varied from 2 to 40 mM in solutions containing 50% normal Na. The reversal potential was determined by interpolation of the acetylcholine (ACh)-induced current versus voltage relationship. The single-channel conductance and the mean channel lifetime were calculated from fluctuation analysis of the ACh-induced end-plate current. Extracellular Na and/or divalent cations affected the reversal potential of endplate channels in a way that cannot be described by the Goldman-Hodgkin-Katz equation or by a simple two-barrier, one-binding site model of the channel if the assumption was made that permeability ratios were constant and not a function of ion concentrations. Increasing the divalent cation concentration decreased the single-channel conductance to approximately 10 pS in solutions with 50% Na and 40 mM divalent cation concentrations. The effect of the divalent cations Ca and Mg on the mean channel lifetime was complex and dependent on whether the divalent cation was Ca or Mg. The mean channel lifetime was not significantly changed in most solutions with increased Ca concentration, while it was slightly prolonged by increased Mg concentration.

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center