Send to

Choose Destination
J Mol Biol. 1984 Jul 25;177(1):107-35.

Mutationally altered 3' ends of yeast CYC1 mRNA affect transcript stability and translational efficiency.


The cyc1-512 mutant of the yeast Saccharomyces cerevisiae contains a 38 base-pair deletion in the 3' non-coding region of the CYC1 gene, which encodes iso-1-cytochrome c. The deletion affects the CYC1 terminator, causing CYC1 mRNAs to be much longer and more unstable than normal. Previous genetic analysis of revertants of the cyc1-512 mutant indicated that the defect could be completely or partially restored by three classes of genetic events: chromosomal rearrangements; local genetic changes near the original cyc1-512 mutation; and suppressors at unlinked loci. We show that all the revertants with chromosomal rearrangements have breakpoints 3' to the CYC1 locus, resulting in the formation of CYC1 mRNA with new 3' non-coding regions and new 3' mRNA termini. One spontaneous cyc1-512 revertant has a 3' insertion that resembles a repetitive, transposable yeast sequence (Ty1); CYC1 transcripts end just within the bounds of this element. This study reveals that the different 3' non-coding sequences, which arose by chromosomal rearrangements, increase the stability of CYC1 mRNA and have varying effects upon the mRNA translational efficiency. Many of the cyc1-512 revertants contain only local genetic changes that create stronger terminators from the weak terminators observed in the cyc1-512 mutant. Several types of terminators in these revertants have been identified; some cause discrete termination over a relatively small region, while others cause heterogeneous termination over a 200 base-pair region. The DNA sequence changes for two cyc1-512 revertants occur in a region with homology to a consensus sequence for transcription termination in yeast that was proposed by Zaret & Sherman (1982). Two classes of extragenic suppressors of the cyc1-512 mutation have been identified. One class of the suppressors appears specifically to enhance termination at weak terminator sites, while the other class of suppressors appears to increase the stability of aberrantly long CYC1 mRNA. The results from this study support our previous suggestion (Zaret & Sherman, 1982) that, in contrast to the usual situation in higher eukaryotes, transcription termination and polyadenylation may be coupled processes in yeast.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center