Send to

Choose Destination
See comment in PubMed Commons below
Biophys J. 1968 Oct;8(10):1146-66.

Autonomic energy conversion. I. The input relation: phenomenological and mechanistic considerations.


The differences between completely and incompletely coupled linear energy converters are discussed using suitable electrochemical cells as examples. The output relation for the canonically simplest class of self-regulated incompletely coupled linear energy converters has been shown to be identical to the Hill force-velocity characteristic for muscle. The corresponding input relation (the "inverse" Hill equation) is now derived by two independent methods. The first method is a direct transformation of the output relation through the phenomenological equations of the converter; Onsager symmetry has no influence on the result. The second method makes use of a model system, a hydroelectric device with a regulator mechanism which depends only on the operational limits of the converter (an electro-osmosis cell operated in reverse) and on the load. The inverse Hill equation is shown to be the simplest solution of the regulator equation. An interesting and testable series of relations between input and output parameters arises from the two forms of the Hill equation. For optimal regulation the input should not be greatly different in the two limiting stationary states (level flow and static head). The output power will then be nearly maximal over a considerable range of load resistance, peak output being obtained at close to peak efficiency.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center