Format

Send to

Choose Destination
Biophys J. 1971 Nov;11(11):886-914.

A model of respiratory heat transfer in a small mammal.

Abstract

A steady-state model of the heat and water transfer occurring in the upper respiratory tract of the kangaroo rat, Dipodomys spectabilis, is developed and tested. The model is described by a steady-state energy balance equation in which the rate of energy transfer from a liquid stream (representing the flow of heat and blood from the body core to the nasal region) is equated with the rate of energy transfer by thermal conduction from the nose tip to the environment. All of the variables in the equation except the flow rate of the liquid stream can be either measured directly or estimated from physiological measurements, permitting the solution of the equation for the liquid stream flow rate. After solving for the liquid stream flow rate by using data from three animals, the energy balance equation is used to compute values of energy transfer, expired air temperature, rates of water loss, and efficiency of vapor recovery for a variety of ambient conditions. These computed values are compared with values measured or estimated from physiological measurements on the same three animals, and the equation is thus shown to be internally consistent. To evaluate the model's predictive value, calculated expired air temperatures are compared with measured expired air temperatures of eight additional animals. Finally, the model is used to examine the general dependence of expired air temperature, of rates of water loss, and of efficiency of vapor recovery on ambient conditions.

PMID:
5113001
PMCID:
PMC1484076
DOI:
10.1016/S0006-3495(71)86262-8
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center