Format

Send to

Choose Destination
Cell. 1979 Jun;17(2):307-17.

Cilia regeneration in starved tetrahymena: an inducible system for studying gene expression and organelle biogenesis.

Abstract

Deciliated starved Tetrahymena recover motility with kinetics similar to those of growing cells and, like growing cells, require RNA and protein synthesis for regeneration. Comparisons of polysome profiles and electrophoretic analyses of newly synthesized proteins indicate, however, that the basal level of protein synthesis in starved cells is markedly lower than that in growing cells. This difference allows demonstration of changes in protein synthesis following deciliation of starved cells which cannot be detected (if they occur at all) in growing cells. Deciliation of starved cells induces a specific and orderly program of protein synthesis. The synthesis of an 80,000 dalton protein (deciliation-induced protein, DIP) begins shortly after deciliation, comprises 15% of the protein synthesized from 20-60 min, and declines around 60 min after deciliation, shortly after most cells have begun to regenerate cilia. The synthesis of a 55,000 dalton protein is also induced during regeneration and has been identified as tubulin using a well characterized antibody made to ciliary tubulin. Tubulin synthesis is undetectable during the first hour after deciliation even though 60-80% of the cells regain mobility and regenerate short but clearly visible cilia. Tubulin synthesis begins 60 min after deciliation and continues for 2 hr. At its peak, tubulin comprises 7-8% of the protein synthesized. The results of actinomycin D addition at different times after deciliation suggest that RNA required for DIP synthesis is synthesized early (0-30 min), while RNA required for tubulin is synthesized later and over a longer period (30-90 min). Thus deciliation of starved cells, an event occurring at the cell periphery, initiates a well defined and reproducible series of events culminating in cilia formation. This system should be useful in elucidating the molecular mechanisms regulating gene expression and organelle biogenesis in Tetrahymena.

PMID:
455466
DOI:
10.1016/0092-8674(79)90156-9
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center