Format

Send to

Choose Destination
Appl Microbiol. 1974 Mar;27(3):540-8.

Dissimilation of tryptophan and related indolic compounds by ruminal microorganisms in vitro.

Abstract

Intraruminal doses of L-tryptophan cause acute pulmonary edema and emphysema in cattle. The D and L isomers of tryptophan and 22 related indolic compounds were incubated with ruminal microorganisms in vitro. Incubation of L-[U-benzene ring-(14)C]tryptophan with ruminal microorganisms for 24 h resulted in 39% of the added radioactivity being incorporated into skatole, 7% into indole, and 4% into indoleacetate (IAA). D-Tryptophan was not degraded to any of these metabolites. The major pathway of skatole formation from L-tryptophan appeared to be by the decarboxylation of IAA. Incubation of [2-(14)C]IAA with ruminal microorganisms for 24 h resulted in 38% incorporation into skatole. L-[5-Hydroxy]tryptophan was degraded to 5-hydroxyskatole and 5-hydroxyindole, whereas 5-hydroxyindoleacetate was degraded to only 5-hydroxyskatole. Incubation of indolepyruvate, indolelactate, and indolealdehyde with ruminal microorganisms resulted in the formation of both skatole and indole. Under similar conditions, indoleacetaldehyde was converted to IAA and tryptophol. The addition of increasing concentrations of glucose (0 to 110 mM) reduced the formation of both skatole and indole from L-tryptophan and resulted in the accumulation of IAA. Antibiotics reduced the degradation of L-tryptophan to skatole and indole, with kanamycin and neomycin particularly effective in reducing the decarboxylation of IAA to skatole.

PMID:
4545142
PMCID:
PMC380081
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for PubMed Central
Loading ...
Support Center