Send to

Choose Destination
J Physiol. 1974 Nov;242(3):685-727.

The electrical response of turtle cones to flashes and steps of light.


1. The linear response of turtle cones to weak flashes or steps of light was usually well fitted by equations based on a chain of six or seven reactions with time constants varying over about a 6-fold range.2. The temperature coefficient (Q(10)) of the reciprocal of the time to peak of the response to a flash was 1.8 (15-25 degrees C), corresponding to an activation energy of 10 kcal/mole.3. Electrical measurements with one internal electrode and a balancing circuit gave the following results on red-sensitive cones of high resistance: resistance across cell surface in dark 50-170 MOmega; time constant in dark 4-6.5 msec. The effect of a bright light was to increase the resistance and time constant by 10-30%.4. If the cell time constant, resting potential and maximum hyperpolarization are known, the fraction of ionic channels blocked by light at any instant can be calculated from the hyperpolarization and its rate of change. At times less than 50 msec the shape of this relation is consistent with the idea that the concentration of a blocking molecule which varies linearly with light intensity is in equilibrium with the fraction of ionic channels blocked.5. The rising phase of the response to flashes and steps of light covering a 10(5)-fold range of intensities is well fitted by a theory in which the essential assumptions are that (i) light starts a linear chain of reactions leading to the production of a substance which blocks ionic channels in the outer segment, (ii) an equilibrium between the blocking molecules and unblocked channels is established rapidly, and (iii) the electrical properties of the cell can be represented by a simple circuit with a time constant in the dark of about 6 msec.6. Deviations from the simple theory which occur after 50 msec are attributed partly to a time-dependent desensitization mechanism and partly to a change in saturation potential resulting from a voltage-dependent change in conductance.7. The existence of several components in the relaxation of the potential to its resting level can be explained by supposing that the ;substance' which blocks light sensitive ionic channels is inactivated in a series of steps.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Wiley Icon for PubMed Central
Loading ...
Support Center