Effect of exogenous penicillin on penicillin biosynthesis

Antimicrob Agents Chemother. 1972 Apr;1(4):315-22. doi: 10.1128/AAC.1.4.315.

Abstract

The addition of phenoxymethylpenicillin (10 mg/ml) at any time during the penicillin fermentation inhibited further accumulation of the antibiotic in broth but had no effect on growth. Benzylpenicillin, 6-aminopenicillanic acid (6-APA), and some semisynthetic penicillins also showed this effect, but penicillin N, penicilloic acid, cephalosporin C, and 7-aminocephalosporanic acid did not limit penicillin accretion. Incorporation of radioactive precursors (cysteine, valine, and sodium phenoxyacetate) into penicillin in the presence of inhibitory concentrations of the antibiotic indicated that penicillin synthesis continued despite the lack of accretion of the antibiotic in broth. The rates of penicillin synthesis in a 48-hr and a 136-hr culture were compared by short-term exposure to Na(2) (35)SO(4), and no significant difference in the biosynthetic rate was observed. Exogenous penicillin in the range of 1 to 15 mg/ml of culture broth had no effect on utilization of acetate or glucose by Penicillium chrysogenum. The antibiotic-synthesizing capacity of the organism was not irreversibly inhibited by exogenous penicillin. The degradation of penicillin during the fermentation was also studied. Penicillin V was stable in broth filtrate. Catabolic enzymes such as penicillinase and penicillin-acylase were not demonstrated in whole broth, nor was the accumulation of 6-APA, penicilloic acid, or other degradation products detected. An examination of the intracellular penicillin concentration and the amount of penicillin associated with the mycelium revealed that cells contained significantly more penicillin late in the fermentation than earlier in the cycle. This cell-associated antibiotic may be a regulatory factor in further penicillin synthesis.

MeSH terms

  • Carbon Radioisotopes
  • Fermentation
  • Penicillins / biosynthesis*
  • Penicillins / pharmacology
  • Penicillium / metabolism*
  • Penicillium chrysogenum / drug effects
  • Penicillium chrysogenum / metabolism
  • Sulfur Radioisotopes

Substances

  • Carbon Radioisotopes
  • Penicillins
  • Sulfur Radioisotopes