Send to

Choose Destination
J Mol Biol. 1985 Dec 5;186(3):565-82.

Structure and composition of influenza virus. A small-angle neutron scattering study.


A detailed analysis is presented of the small-angle neutron scattering curves of homogeneous solutions of influenza B virus, both intact and after treatment with bromelain, which removes the external glycoprotein spikes. The two sets of data are consistent with the following low-resolution structure: the virus particles are spherical, about 1200 A in diameter and of Mr about 180 X 10(6). The lipid bilayer is centred at a radius of 425 A, is 40 A to 50 A thick and constitutes 25% to 28% of the virus mass. The surface glycoproteins, predominantly haemagglutinin, contribute 40% to 46% of the total mass. Surprisingly little protein is found in the interior of the virus. It is suggested that the reason for this is that many particles do not contain the full complement of ribonucleoprotein complexes. These results are in good agreement with recent scanning transmission electron microscopic measurements of molecular mass and cryo-electron microscopic observations of the same preparations. Appendix 1 describes a new method of deriving spherical shell models from contrast variation neutron scattering data on viruses, in which scattering curves from all measured contrasts are used simultaneously. There is also a discussion of the assumptions and limitations implicit in the structural interpretation of such models, with emphasis on viruses containing lipid bilayers. Appendix 2 examines the effect on the scattering curves of various arrangements of the surface glycoproteins.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center