Send to

Choose Destination
J Mol Biol. 1985 Aug 20;184(4):621-43.

Fine structure of wide and narrow vertebrate muscle Z-lines. A proposed model and computer simulation of Z-line architecture.


A model of the structure of vertebrate Z-lines and Z-line analogs is introduced and supported by evidence from electron microscope studies of wide Z-lines (rat and feline soleus, and feline and canine cardiac muscles), narrow Z-lines (guppy, newt and frog skeletal muscles), and Z-rods (from a patient with nemaline myopathy and from cardiac muscles of aged dog). The model is based on a pair of Z-filaments (termed a Z-unit), which are linked near their centers at a 90 degrees angle and form bridges between neighboring antipolar thin (actin) filaments. A square lattice of four Z-filament pairs (the basic structure of the Z-line, termed a Z-line unit) defines the geometrical position of the I-square unit. In this native state of the Z-line, small square and large square net forms appear in cross-section. Other cross-sectional patterns of Z-lines, including basket-weave and diagonal-square net patterns, can be explained by detachment of the Z-filament from the Z-filament binding region within each Z-filament pair due to chemical or physical stress. Dissection of Z-lines and Z-line analogs with calcium-activated neutral protease provides evidence that the width of all wide Z-line structures is determined by the amount of overlap of antipolar thin filaments from adjacent sarcomeres. Longitudinal patterns of narrow and wide Z-lines are shown and described in relation to the model. To test the proposed model, the dynamics of the Z-line unit structure were computer-simulated. An attempt was made to correlate longitudinal (z direction) and cross-sectional (x and y directions) patterns and to determine the amount of movement of thin or Z-filaments that is required to explain the diversity observed in cross-sectional patterns of Z-lines. The computer simulations demonstrated that the structural transitions among the small square, and therefore large square net, as well as basket-weave and diagonal-square net forms seen in cross-sections could be caused by movements of thin filaments less than 10 nm in any direction (x, y or z).(ABSTRACT TRUNCATED AT 400 WORDS).

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center