Send to

Choose Destination
Biochim Biophys Acta. 1985 May 14;815(2):268-80.

The effect of growth temperature on the thermotropic behavior of the membranes of a thermophilic Bacillus. Composition-structure-function relationships.


The following study was carried out with the aim of widening our understanding of the thermoadaptive mechanisms of the membrane of thermophiles, using Bacillus stearothermophilus var. nondiastaticus as test-organism. The phospholipids and their acyl chain composition of this Bacillus studied in relation to the physical properties of its membrane from bacteria grown at various temperatures. Phospholipids account for 68-75 weight% of the total lipid in cells grown at 45, 55 or 65 degrees C. Phosphatidylglycerol and diphosphatidylglycerol constitute up to 90% of the total phospholipids; no amino phospholipids were found. Increasing the growth temperatures from 45 degrees to 65 degrees C caused an approximately 4-fold decrease in the proportion of the branched-chain fatty acids and a 2-fold increase in the amount of the saturated acyl chains. The reduced proportion of the branched fatty acids was mainly due to a decrease in their anteiso forms. Unsaturated fatty acids were not produced by cells grown at 65 degrees C. In accordance with the fatty acid composition, the molecular packing of phospholipids in monolayers was more expanded with phospholipids from 45 degrees C grown cells as compared with cultures grown at 55 degrees C. The thermotropic gel to liquid-crystalline phase transition of the membrane lipids was monitored by differential scanning calorimetry and fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene. With increase of the growth temperature the phase transition was progressively shifted to higher but narrower range of temperatures. Completion of the lipid melting occurred always at temperatures below those employed for growth. A constructed phase diagram enabled to relate the growth temperature, the fatty acid composition and the lipid apparent microviscosity at temperatures not used in the present study for growth of the thermophile. The minimum temperature for growth and the upper boundary temperature of the least saturated lipid crystallization were extrapolated in this manner; they correspond to the experimentally determined minimal growth temperature. The apparent microviscosity, a measure of membrane order, decreased gradually and conspicuously as the growth temperature was elevated. The delimiting apparent microviscosity values, at the maximal (65 degrees C) and minimal (41 degrees C) growth temperatures were 0.8 and 1.8 poise, respectively. This lack of rigorous homeostatic control of the bulk lipid viscosity prompted reevaluation of the physiological significance of 'homeoviscous adaptation' in Bacillus stearothermophilus.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center