Send to

Choose Destination
See comment in PubMed Commons below
Biophys J. 1986 Feb;49(2):521-30.

Fine structure in near-field and far-field laser diffraction patterns from skeletal muscle fibers.


Regions of muscle fibers that are many sarcomeres in length and uniform with regard to striation spacing, curvature, and tilt have been observed by light microscopy. We have investigated the possibility that these sarcomere domains can explain the fine structure in optical diffraction patterns of skeletal muscle fibers. We studied near-field and far-field diffraction patterns with respect to fiber translation and to masking of the laser beam. The position of diffracted light in the near-field pattern depends on sarcomere length and position of the diffracting regions within the laser beam. When a muscle fiber was translated longitudinally through a fixed laser beam, the fine structural lines in the near-field diffraction pattern moved in the same direction and by the same amount as the fiber movement. Translation of the muscle fiber did not result in fine structure movement in the far-field pattern. As the laser beam was incrementally masked from one side, some fine structural lines in both the near-field and far-field diffraction patterns changed in intensity while others remained the same. Eventually, all the fine structural lines broadened and decreased in intensity. Often a fine structural line increased in intensity or a dark area in the diffraction pattern became brighter as the laser beam was restricted. From these results we conclude that the fine structure in the laser diffraction pattern is due to localized and relatively uniform regions of sarcomeres (domains) and to cross interference among light rays scattered by different domains.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center