Format

Send to

Choose Destination
J Comp Neurol. 1986 Feb 1;244(1):36-52.

Large neurons in the primate neostriatum examined with the combined Golgi-electron microscopic method.

Abstract

Large neurons in the monkey neostriatum were examined in the electron microscope in tissue treated with the rapid-Golgi impregnation method followed by the gold-toning procedure. Two types of large neurons were investigated: an aspiny neuron (aspiny type II; N = 5) with numerous varicose dendrites and a spiny cell (spiny type II; N = 1) with few sparsely spined dendrites. The large aspiny neurons had variably shaped somata, an eccentric highly invaginated nucleus, and a cytoplasm rich in organelles. Mitochondria were distributed unevenly in dendrites and were localized primarily in varicosities. Some mitochondria exhibited dense bodies 80-300 nm in size. Most synapses (84%) onto large aspiny neurons occurred 20 micron or more from the cell body and contacted dendritic varicosities (63%). A smaller proportion of boutons (21%) contacted constricted portions of varicose segments. A low incidence of synaptic boutons was observed on smooth primary and secondary dendrites (11%), cell bodies (3%), and branch points (2%). Seven percent of the axons that synapsed with large aspiny neurons also contacted nearby dendrites or spines of medium-sized spiny neurons. At least eight morphologically distinct types of axons making synapses with large aspiny neurons were identified and included both symmetric and asymmetric types. The large spiny neuron was different from the large aspiny neuron in its subcellular characteristics. Synapses were found on all portions of the cell, including the axon initial segment, but fewer types of axonal inputs were identified. These findings confirm that the two types of large neurons identified in Golgi impregnations of the primate neostriatum are also different at the ultrastructural level, both in their cytological features and in their synaptic organization. The large aspiny neuron integrates synaptic inputs that innervate a relatively large area of caudate neuropil and appear to arise from a variety of extrinsic and intrinsic sources. The high density of synaptic inputs to dendritic varicosities suggests that they have an important functional role.

PMID:
3950089
DOI:
10.1002/cne.902440104
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center