Format

Send to

Choose Destination
Phys Ther. 1986 Jan;66(1):23-31.

Importance of correcting isokinetic peak torque for the effect of gravity when calculating knee flexor to extensor muscle ratios.

Abstract

The purpose of our investigation was to compare, for the hamstring and quadriceps femoris muscles, peak torque values uncorrected for gravity with the peak torque values corrected for gravity and to determine the effect of making this correction on the hamstring to quadriceps femoris muscle peak torque ratio at slow and fast isokinetic speeds. We measured peak torques isokinetically at 60 degrees/sec (slow) and 240 degrees/sec (fast) in 25 female university soccer players. The gravity effect torque (GET) is the torque resulting from the effect of gravity on the combined weight of the leg and dynamometer arm at the precise angle of extension and flexion peak torque. The GET was added to the measured quadriceps femoris muscle peak torque and subtracted from the hamstring muscle peak torque to yield gravity corrected values. Failure to consider GET greatly underestimated quadriceps femoris muscle torque and overestimated hamstring muscle torque and the ratio between these torques at both speeds. Whereas the uncorrected hamstring to quadriceps femoris muscle peak torque ratio increased as speeds went from 60 degrees/sec to 240 degrees/sec, the gravity corrected ratio significantly decreased. Clinicians must remember the importance of making the gravity correction in patients with reduced torque output where the gravitational torque is a greater percentage of the measured torque to ascertain correctly the relative strength of antagonists inversely affected by gravity.

PMID:
3941824
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center