Send to

Choose Destination
J Neurochem. 1985 Apr;44(4):1037-44.

Ethanol's effects on cortical adenylate cyclase activity.


The effects of ethanol on beta-adrenergic receptor-coupled adenylate cyclase (AC) of mouse cerebral cortex were examined. The addition of ethanol (20-500 mM) to incubation mixtures containing cortical membranes demonstrated that ethanol could increase AC activity and potentiate the stimulatory effects of guanylyl-imidodiphosphate [Gpp(NH)p] on AC activity. Ethanol increased the rate of activation of AC by guanine nucleotides and concomitantly decreased the EC50 for magnesium required to achieve maximal stimulation of cortical AC. The EC50 values for Gpp(NH)p and isoproterenol stimulation of AC activity were also altered by ethanol. Ethanol was capable of stimulating AC extracted by use of digitonin. The AC activity in the digitonin extract was no longer sensitive to the addition of Gpp(NH)p or NaF, but was still stimulated by ethanol. We propose multiple sites of action for ethanol in stimulating cortical AC activity. These sites include actions at the beta-adrenergic receptor, at the G/F coupling proteins, and at the catalytic unit of cortical AC. Comparison of ethanol's actions on cortical beta receptor coupled AC activity with prior reported actions of ethanol on striatal dopamine (DA)-sensitive AC indicated differential sensitivities of these two AC systems to ethanol. These differences may be determined by specific coupling characteristics of the striatal and cortical AC systems or by differences in the plasma membranes in which striatal and cortical AC systems are located.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center