Format

Send to

Choose Destination
See comment in PubMed Commons below
J Cell Biol. 1985 Aug;101(2):506-17.

Intermediate filaments and the initiation of desmosome assembly.

Abstract

The desmosome junction is an important component in the cohesion of epithelial cells, especially epidermal keratinocytes. To gain insight into the structure and function of desmosomes, their morphogenesis has been studied in a primary mouse epidermal (PME) cell culture system. When these cells are grown in approximately 0.1 mM Ca2+, they contain no desmosomes. They are induced to form desmosomes when the Ca2+ level in the culture medium is raised to approximately 1.2 mM Ca2+. PME cells in medium containing low levels of Ca2+, and then processed for indirect immunofluorescence using antibodies directed against desmoplakins (desmosomal plaque proteins), display a pattern of discrete fluorescent spots concentrated mainly in the perinuclear region. Double label immunofluorescence using keratin and desmoplakin antibodies reveals that the desmoplakin-containing spots and the cytoplasmic network of tonofibrils (bundles of intermediate filaments [IFB]) are in the same juxtanuclear region. Within 1 h after the switch to higher levels of Ca2+, the spots move toward the cell surface, primarily to areas of cell-cell contact and not to free cell surfaces. This reorganization occurs at the same time that tonofibrils also move toward cell surfaces in contact with neighboring cells. Once the desmoplakin spots have reached the cell surface, they appear to aggregate to form desmosomes. These immunofluorescence observations have been confirmed by immunogold ultrastructural localization. Preliminary biochemical and immunological studies indicate that desmoplakin appears in whole cell protein extracts and in Triton high salt insoluble residues (i.e., cytoskeletal preparations consisting primarily of IFB) prepared from PME cells maintained in medium containing both low and normal Ca2+ levels. These findings show that certain desmosome components are preformed in the cytoplasm of PME cells. These components undergo a dramatic reorganization, which parallels the changes in IFB redistribution, upon induction of desmosome formation. The reorganization depends upon both the extracellular Ca2+ level and the establishment of cell-to-cell contacts. Furthermore, the data suggests that desmosomes do not act as organizing centers for the elaboration of IFB. Indeed, we postulate that the movement of IFB and preformed desmosomal components to the cell surface is an important initiating event in desmosome morphogenesis.

PMID:
3894376
PMCID:
PMC2113668
[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk